Coupling CFD-DEM with dynamic meshing: A new approach for fluid-structure interaction in particle-fluid flows
نویسندگان
چکیده
Article history: Received 2 August 2017 Received in revised form 29 October 2017 Accepted 13 November 2017 Available online 21 November 2017 Many important engineering applications involve the interaction of free-moving objects with dispersed multiphase flows, however due to the challenge and complexity ofmodelling these systems,modelling approaches remain very limited and very few studies have been reported. This work presents a new method capable of addressing these problems. It integrates a dynamic meshing approach, used to explicitly capture the flow induced by free-moving large object(s), with a conventional CFD-DEM method to capture the behaviour of small particles in particle-fluid flow. The force and torque acting on the large object due to the fluid flow are explicitly calculated by integrating pressure and viscous stress acting on the object's surface and the forces due to collisions with both the smaller particles and other structures are calculated using a soft-sphere DEM approach. The developed model has been fully implemented on the ANSYS/Fluent platform due to its efficient handling of dynamic meshing and complex and/or free-moving boundaries, thus it can be applied to a wide range of industrial applications. Validation tests have been carried out for two typical gas-solid fluidization cases, they show good qualitative and quantitative agreement with reported experimental literature data. The developed model was then successfully applied to gas fluidization with a large immersed tube which was either fixed or freemoving. The predicted interacting dynamics of the gas, particle and tube were highly complex and highlighted the value of fully resolving the flow around the large object. The results demonstrated that the capability of a conventional CFD-DEM approach could be enhanced to address free-body fluid-structure interaction problems encountered in particle-fluid systems. © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
منابع مشابه
Study on Pebble-Fluid Interaction Effect in Pebble Bed Reactors
INTRODUCTION In pebble bed reactors (PBRs), fuel pebbles containing TRISO particles continuously circulate within the core during operation, while the coolant fluid, either helium gas (in Pebble Bed Gas-cooled Reactors) or molten flibe salt (in Pebble Bed-Advanced High Temperature Reactors), continuously passes through the pebbles to transfer the heat generated by fission reactions out of the c...
متن کاملEffects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory
This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...
متن کاملA Multi-Scale Hybrid CFD-DEM-PBM Description of a Fluid-Bed Granulation Process
In this study, a hybrid multi-scale model has been developed for a continuous fluid bed wet granulation process by dynamically coupling computational fluid dynamics (CFD) with a discrete element model (DEM) and population balance model (PBM). In this process, the granules are formed by spraying the liquid binder on the fluidized powder bed. The fluid flow field has been solved implementing CFD ...
متن کاملMultiphase flow and tromp curve simulation of dense medium cyclones using Computational Fluid Dynamics
Dense Medium Cyclone is a high capacity device that is widely used in coal preparation. It is simple in design but the swirling turbulent flow, the presence of medium and coal with different density and size fraction and the presence of the air-core make the flow pattern in DMCs complex. In this article the flow pattern simulation of DMC is performed with computational fluid dynamics and Fluent...
متن کاملSimulation of Store Separation using Low-cost CFD with Dynamic Meshing
The simulation of the store separation using the automatic coupling of dynamic equations with flow aerodynamics is addressed. The precision and cost (calculation time) were considered as comparators. The method used in the present research decreased the calculation cost while limiting the solution error within a specific and tolerable interval. The methods applied to model the aerodynamic force...
متن کامل